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Föhringer Ring 6, D-80805 Munich, Germany

E-mail: f.feroz@mrao.cam.ac.uk, b.c.allanach@damtp.cam.ac.uk,

mph@mrao.cam.ac.uk, s.s.abdussalam@damtp.cam.ac.uk, rxt@astro.ox.ac.uk,

arne.weber@mppmu.mpg.de

Abstract: We study the properties of the constrained minimal supersymmetric standard

model (mSUGRA) by performing fits to updated indirect data, including the relic density

of dark matter inferred from WMAP5. In order to find the extent to which µ < 0 is dis-

favoured compared to µ > 0, we compare the Bayesian evidence values for these models,

which we obtain straightforwardly and with good precision from the recently developed

multi-modal nested sampling (‘MultiNest’) technique. We find weak to moderate evi-

dence for the µ > 0 branch of mSUGRA over µ < 0 and estimate the ratio of probabilities

to be P (µ > 0)/P (µ < 0) = 6−61 depending on the prior measure and range used. There is

thus positive (but not overwhelming) evidence that µ > 0 in mSUGRA. The MultiNest

technique also delivers probability distributions of parameters and other relevant quantities

such as superpartner masses. We explore the dependence of our results on the choice of

the prior measure used. We also use the Bayesian evidence to quantify the consistency

between the mSUGRA parameter inferences coming from the constraints that have the

largest effects: (g − 2)µ, BR(b → sγ) and cold dark matter (DM) relic density ΩDMh2.
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1. Introduction

The impending start of operation of the Large Hadron Collider (LHC) makes this a very

exciting time for supersymmetric (SUSY) phenomenology. Numerous groups have been

pursuing a programme to fit simple SUSY models and identify the regions in the param-

eter space that might be of interest with the forthcoming LHC data [1 – 6]. The Minimal

Supersymmetric Standard Model (MSSM) with one particular choice of universal boundary

conditions at the grand unification scale, called either the Constrained Minimal Supersym-

metric Standard Model (CMSSM) or mSUGRA [7], has been studied quite extensively

in multi-parameter scans. mSUGRA has proved to be a popular choice for SUSY phe-

nomenology because of the small number of free parameters. In mSUGRA, the scalar

mass m0, gaugino mass M1/2 and tri-linear coupling A0 are assumed to be universal at a

gauge unification scale MGUT ∼ 2 × 1016 GeV. In addition, at the electroweak scale one

selects tan β, the ratio of Higgs vacuum expectation values and sign(µ), where µ is the

Higgs/higgsino mass parameter whose square is computed from the potential minimisation

conditions of electroweak symmetry breaking (EWSB) and the empirical value of the mass
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of the Z0 boson, MZ . The family universality assumption is well motivated since flavour

changing neutral currents are observed to be rare. Indeed several string models (see, for

example ref. [8]) predict approximate MSSM universality in the soft terms. Nevertheless,

mSUGRA is just one (albeit popular) choice among a multitude of possibilities.

Recently, Bayesian parameter estimation techniques using the Markov Chain Monte

Carlo (MCMC) sampling have been applied to the study of mSUGRA, performing a multi-

dimensional Bayesian fit to indirect constraints [9 – 16]. Also, a study has been extended to

large volume string compactified models [17]. A particularly important constraint comes

from the cold dark matter (DM) relic density ΩDMh2 determined by the Wilkinson Mi-

crowave Anisotropy Probe (WMAP). DM is assumed to consist solely of the lightest su-

persymmetric particle (LSP). As pointed out in [12], the accuracy of the DM constraint

results in very narrow steep regions of degenerate χ2 minima as the system is rather under-

constrained. This makes the global fit to all the relevant mSUGRA parameters potentially

difficult. If the MSSM is confirmed in the forthcoming collider data, it will hopefully be

possible to break many of these degeneracies using collider observables such as edges in

kinematical distributions. However, it is expected that one degeneracy will remain from

LHC data in the form of the overall mass scale of the sparticles. We apply the newly de-

veloped MultiNest technique [18, 19] to explore this highly degenerate parameter space

efficiently. With this technique, one can also calculate the ‘Bayesian evidence’ which plays

the central role in Bayesian model selection and hence allows one to distinguish between

different models.

Ref. [20] performed a random scan of 105 points in the parameter spaces of mSUGRA,

minimal anomaly mediated SUSY breaking (mAMSB) and minimal gauge mediated SUSY

breaking (mGMSB). b and electroweak physics observables (but not the dark matter relic

density) were used to assign a χ2 to each of the points. The resulting minimum χ2 values

for each scenario were then compared in order to select which model is preferred by the

data. Unfortunately, the conclusions drawn (that mAMSB is preferred by data) may have

been reversed had the dark matter relic density been included in the χ2 fit. It is also not

clear how accurate the resulting value of minimum χ2 is in each scenario, since the scans

are necessarily sparse due to the high dimensionality of the parameter space.1 Recently,

several studies of the mSUGRA parameter space have used Markov Chain Monte Carlo

in order to focus on the joint analysis of indirect constraints from experiment with the

ΩDMh2 constraint as determined by WMAP and other data. We extend this approach by

using MultiNest to calculate the Bayesian evidence, which, when compared with fits to

different models, can be used for hypothesis testing. As an example, we consider µ > 0

mSUGRA versus µ < 0 mSUGRA as alternative hypotheses. In ref. [12], the evidence

ratio for these two quantities was calculated using the method of bridge sampling [21] in

MCMCs. However, it is not clear how accurate the estimation of the evidence ratio was, and

no uncertainties were quoted. The present approach yields, robustly small uncertainties

on the ratio, for a given hypothesis and prior probability distribution. Since ref. [12],

1However, this point could be easily fixed by the authors of ref. [20] by separating the points randomly

into two equally sized samples and examining the χ2 difference of the minimum point in each.
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a tension has developed between the constraints coming from the anomalous magnetic

moment of the muon (g−2)µ, and the branching ratio of the decay of b quarks into s quarks

BR(b → sγ), which favour opposite signs of µ [14]. Ref. [14] investigated the constraints

on continuous parameters for either sign of µ and used the Bayesian calibrated p–value

method [22] to get a rough estimate of the upper limit for the evidence ratio between

µ > 0 mSUGRA and µ < 0 mSUGRA of 10 : 1. We also use the evidence to examine

quantitatively any incompatibilities between mSUGRA parameter inferences coming from

three main constraints: (g − 2)µ, BR(b → sγ) and ΩDMh2. Thus we determine to what

extent the three measurements are compatible with each other in an mSUGRA context.

We also update the fits to WMAP5 data for the first time and include additional b-physics

constraints. Recent data point to an increased statistical significance in the discrepancy

between the Standard Model prediction and the experimental value of (g − 2)µ, and this

leads to an additional statistical pull towards a larger contribution of (g−2)µ coming from

supersymmetry.

Our purpose in this paper is two-fold: as well as producing interesting physical insights,

we also aim to gain experience in developing and applying tools for efficient Bayesian

inference, which will prove useful in the analysis of future collider data.

This paper is organised as follows. In section 2 we motivate the case for Bayesian model

selection. In section 3 we outline our theoretical setup and present our results in section 4.

Finally, in section 5 we list the summary and present our conclusions. We motivate the

case for the use of Bayesian evidence in quantifying consistency between different data-sets

in appendix A.

2. Bayesian inference

A common problem in data analysis is to use the data to make inferences about parameters

of a given model. A higher level of inference is to decide between two or more competing

models. For instance, in the case of mSUGRA, one would like to know whether there is

sufficient evidence in the data to rule out the µ < 0 branch. Bayesian inference provides a

consistent approach to model selection as well as to the estimation of a set parameters Θ

in a model (or hypothesis) H for the data D. It can also be shown that Bayesian inference

is the unique consistent generalisation of the Boolean algebra [23].

Bayes’ theorem states that

Pr(Θ|D,H) =
Pr(D|Θ,H) Pr(Θ|H)

Pr(D|H)
, (2.1)

where Pr(Θ|D,H) ≡ P (Θ) is the posterior probability distribution of the parameters,

Pr(D|Θ,H) ≡ L(Θ) is the likelihood, Pr(Θ|H) ≡ π(Θ) is the prior distribution, and

Pr(D|H) ≡ Z is the Bayesian evidence.

Bayesian evidence is simply the factor required to normalise the posterior over Θ and

is given by:

Z =

∫

L(Θ)π(Θ)dNΘ, (2.2)
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where N is the dimensionality of the parameter space. Since the Bayesian evidence does not

depend on the parameter values Θ, it is usually ignored in parameter estimation problems

and the posterior inferences are obtained by exploring the un-normalized posterior using

standard MCMC sampling methods.

A useful feature of Bayesian parameter estimation is that one can easily obtain the

posterior distribution of any function, f , of the model parameters Θ. Since,

Pr(f |D) =

∫

Pr(f,Θ|D)dΘ =

∫

Pr(f |Θ,D) Pr(Θ|D)dΘ =

∫

δ(f(Θ) − f) Pr(Θ|D)dΘ

(2.3)

where δ(x) is the delta function. Thus one simply needs to compute f(Θ) for every Monte

Carlo sample and the resulting sample will be drawn from Pr(f |D). We make use of this

feature in section 4.2 where we present the posterior probability distributions of various

observables used in the analysis of mSUGRA model.

In order to select between two models H0 and H1 one needs to compare their respective

posterior probabilities given the observed data set D, as follows:

Pr(H1|D)

Pr(H0|D)
=

Pr(D|H1) Pr(H1)

Pr(D|H0) Pr(H0)
=

Z1

Z0

Pr(H1)

Pr(H0)
, (2.4)

where Pr(H1)/Pr(H0) is the prior probability ratio for the two models, which can often

be set to unity but occasionally requires further consideration. It can be seen from eq. 2.4

that the Bayesian evidence takes the center stage in Bayesian model selection. As the

average of likelihood over the prior, the Bayesian evidence is higher for a model if more

of its parameter space is likely and smaller for a model with highly peaked likelihood but

has many regions in the parameter space with low likelihood values. Hence, Bayesian

model selection automatically implements Occam’s razor: a simpler theory which agrees

well enough with the empirical evidence is preferred. A more complicated theory will only

have a higher evidence if it is significantly better at explaining the data than a simpler

theory.

Unfortunately, evaluation of the multidimensional integral (2.2) is a challenging numer-

ical task. Standard techniques like thermodynamic integration [24] are extremely computa-

tionally expensive which makes evidence evaluation typically at least an order of magnitude

more costly than parameter estimation. Some fast approximate methods have been used

for evidence evaluation, such as treating the posterior as a multivariate Gaussian centred

at its peak (see e.g. ref. [25]), but this approximation is clearly a poor one for multi-modal

posteriors (except perhaps if one performs a separate Gaussian approximation at each

mode). The Savage-Dickey density ratio has also been proposed [26] as an exact, and po-

tentially faster, means of evaluating evidences, but is restricted to the special case of nested

hypotheses and a separable prior on the model parameters. Bridge sampling [21] allows

the evaluation of the ratio of Bayesian evidence of two models and is implemented in the

‘bank sampling’ method of ref. [27] but it is not yet clear how accurately bank sampling can

calculate these evidence ratios. Various alternative information criteria for model selection

are discussed by [28], but the evidence remains the preferred method.
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| log ∆E| Odds Probability Remark

< 1.0 . 3 : 1 < 0.750 Inconclusive

1.0 ∼ 3 : 1 0.750 Weak Evidence

2.5 ∼ 12 : 1 0.923 Moderate Evidence

5.0 ∼ 150 : 1 0.993 Strong Evidence

Table 1: The scale we use for the interpretation of model probabilities. Here the log represents

the natural logarithm.

The nested sampling approach, introduced by Skilling [29], is a Monte Carlo method

targeted at the efficient calculation of the evidence, but also produces posterior inferences

as a by-product. Feroz & Hobson [18, 19] built on this nested sampling framework and

have recently introduced the MultiNest algorithm which is efficient in sampling from

multi-modal posteriors exhibiting curving degeneracies, producing posterior samples and

calculating the evidence value and its uncertainty. This technique has greatly reduced the

computational cost of model selection and the exploration of highly degenerate multi-modal

posterior distributions. We employ this technique in this paper.

The natural logarithm of the ratio of posterior model probabilities provides a useful

guide to what constitutes a significant difference between two models:

log ∆E = log

[

Pr(H1|D)

Pr(H0|D)

]

= log

[Z1

Z0

Pr(H1)

Pr(H0)

]

. (2.5)

We summarise convention we use in this paper in table 1.

While for parameter estimation, the priors become irrelevant once the data are pow-

erful enough, for model selection the dependence on priors always remains (although with

more informative data the degree of dependence on the priors is expected to decrease, see

e.g. ref. [30]); indeed this explicit dependence on priors is one of the most attractive fea-

tures of Bayesian model selection. Priors should ideally represent one’s state of knowledge

before obtaining the data. Rather than seeking a unique ‘right’ prior, one should check

the robustness of conclusions under reasonable variation of the priors. Such a sensitivity

analysis is required to ensure that the resulting model comparison is not overly dependent

on a particular choice of prior and the associated metric in parameter space, which controls

the value of the integral involved in the computation of the Bayesian evidence (for some

relevant cautionary notes on the subject see ref. [31]).

One of the most important applications of model selection is to decide whether the

introduction of new parameters is necessary. Frequentist approaches revolve around the

significance test and goodness-of-fit statistics, where one accepts the additional parameter

based on the improvement in ∆χ2 by some chosen threshold. It has been shown that

such tests can be misleading (see e.g. ref. [26, 22]), not least because they depend only

on the values of χ2 at the best-fit point, rather than over the entire allowed range of the

parameters.

Another application of Bayesian model selection is in quantifying the consistency be-

tween two or more data sets or constraints [25, 32]. Different experimental observables

may “pull” the model parameters in different directions and consequently favour different
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regions of the parameter space. Any obvious conflicts between the observables are likely to

be noticed by the “chi by eye” method employed to date but it is imperative for forthcom-

ing high-quality constraints to have a method that can quantify these discrepancies. The

simplest scenario for analysing different constraints on a particular model is to assume that

all constraints provide information on the same set of parameter values. We represent this

hypothesis by H1. This is the assumption which underlies the joint analysis of the con-

straints. However, if we are interested in accuracy as well as precision then any systematic

differences between constraints should also be taken into account. In the most extreme

case, which we represent by H0, the constraints would be in conflict to such an extent that

each constraint requires its own set of parameter values, since they are in different regions

of parameter space. Bayesian evidence provides a very easy method of distinguishing be-

tween scenarios, H0 and H1. To see this, we again make use of equation 2.4. If we have no

reason to favour either of H0 or H1 over the other, then we can distinguish between these

two scenarios using the following ratio,

R =
Pr(D|H1)

Pr(D|H0)
=

Pr(D|H1)
∏

i Pr(Di|H0)
. (2.6)

Here the numerator represents the joint analysis of all the constraints D =

{D1,D2, . . . ,Dn} while in the denominator the individual constraints D1,D2, . . . ,Dn are

assumed to be independent and are each fit individually to mSUGRA, with a different

set of mSUGRA parameters for each Di. The interpretation of the log R value can be

made in a similar manner to model selection, as discussed in the preceding paragraph. A

positive value of log R gives the evidence in favour of the hypothesis H1 that all the con-

straints are consistent with each other while a negative value would point towards tension

between constraints, which prefer different regions of mSUGRA parameter space. We fol-

low this recipe to carry out consistency checks for the mSUGRA model between (g − 2)µ,

BR(b → sγ) and ΩDMh2 as determined by WMAP and other cosmological measurements.

The H1 hypothesis thus states that mSUGRA jointly fits these three observables, whereas

H0 states that they all prefer different regions of parameter space and so we require an

‘(mSUGRA)3’ model to fit them. Given the fact that Bayesian evidence naturally embod-

ies a quantification of Occam’s razor, the resulting complexity in the model coming from

the additional 2 sets of mSUGRA parameters must be matched by a better fit to data for

H0 to be preferred.

3. The analysis

Our parameter space Θ contains 8 parameters, 4 of them being the mSUGRA parameters;

m0, M1/2, A0, tan β and the rest taken from the Standard Model (SM): the QED coupling

constant in the MS scheme αMS(MZ), the strong coupling constant αMS
s (MZ), the running

mass of the bottom quark mb(mb)
MS and the pole top mass mt. We refer to these SM

parameters as nuisance parameters. Experimental errors on the mass MZ of the Z0 boson

and the muon decay constant Gµ are so small that we fix these parameters to their central

values of 91.1876 GeV and 1.16637 × 10−5 GeV−2 respectively.

– 6 –
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mSUGRA parameters 2 TeV range 4TeV range

m0 60 GeV to 2TeV 60 GeV to 4 TeV

M1/2 60 GeV to 2TeV 60 GeV to 4 TeV

A0 –4 TeV to 4 TeV –7 TeV to 7TeV

tan β 2 to 62 2 to 62

Table 2: mSUGRA uniform prior parameter ranges

SM parameters Mean value Uncertainty Reference

µ σ (exp)

1/αMS 127.918 0.018 [33]

αMS
s (MZ) 0.1176 0.002 [33]

mb(mb)
MS 4.20 GeV 0.07 GeV [33]

mt 170.9 GeV 1.8 GeV [34]

Table 3: Constraints on the Standard Model (nuisance) parameters

For all the models analysed in this paper, we used 4,000 live points (see refs. [18, 19])

with the MultiNest technique. This corresponds to around 400,000 likelihood evaluations

taking approximately 20 hours on 4 3.0 GHz Intel Woodcrest processors.

3.1 The choice of prior probability distribution

In all cases, we assume the prior is separable, such that

π(Θ) = π(θ1)π(θ2) . . . π(θ8), (3.1)

where π(θi) represents the prior probability of parameter θi. We consider two initial ranges

for the mSUGRA parameters which are listed in table 2. The “2 TeV” range is motivated by

a general “naturalness” argument that SUSY mass parameters should lie within O(1 TeV),

since otherwise a fine-tuning in the electroweak symmetry breaking sector results. Deciding

which region of parameter space is natural is obviously subjective. For this reason, we

include the “4 TeV” range results to check the dependence on prior ranges. We consider

the branches µ < 0 and µ > 0 separately.

We impose flat priors on all 4 mSUGRA parameters (i.e. m0,M1/2, A0 and tan β) for

the “2 TeV” and “4 TeV” ranges and both signs of µ. Current constraints on SM (nuisance)

parameters are listed in table 3.2 With the means and 1σ uncertainties from table 3, we

impose Gaussian priors on SM (nuisance) parameters truncated at 4σ from their central

values. We also perform the analysis for flat priors in log m0 and log M1/2 for both ranges

2We note that the experimental constraint on mt is changing quite rapidly as new results are issued from

the Tevatron experiments. The latest combined constraint (released after this paper was first written) is

mt = 172.4± 1.2 GeV [35]. Any fit differences caused in the movement of the central value will be smeared

out by its uncertainty, but we shall mention at the relevant point below where the new value could change

the fits.
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Observable Mean value Uncertainty Reference

δaµ × 10−10 29.5 8.8 [36]

MW 80.398 GeV 27 MeV [37, 38]

sin2 θl
w 0.23149 0.000173 [39, 37]

BR(b → sγ) × 104 3.55 0.72 [40, 41]

∆o− 0.0375 0.0289 [40, 41]

RBR(Bu→τν) 1.259 0.378 [42]

R∆ms
0.85 0.12 [42, 43]

Table 4: Summary of the Gaussian distributed observables used in the analysis. For each quantity

we use a likelihood function with central mean µ and standard deviation s =
√

σ2 + τ2 where σ

is the experimental uncertainty and τ is the theoretical uncertainty. ∆o− represents the isospin

asymmetry of B → K∗γ. RBR(Bu→τν) represents the ratio of the experimental and SM predictions

of the branching ratio of Bu mesons decaying into a tau and a tau neutrino. R∆ms

is the ratio of

the experimental and the SM neutral Bs meson mixing amplitudes. The non-Gaussian likelihoods

for the LEP constraint on Higgs mass, BR(Bs → µ+µ−) and ΩDMh2 are described later.

and both signs of µ. Since,

∫

d log m0 d log M1/2 p(m0,M1/2|D) =

∫

dm0 dM1/2

p(m0,M1/2|D)

m0M1/2
(3.2)

it is clear that the logarithmic prior measures have a factor 1/(m0M1/2) compared to

the linear prior measure and so it could potentially favour lighter sparticles. If the data

constrains the model strongly enough, lighter sparticles would only be favoured negligibly.

Our main motive in seeing the variation of the fit to the variation in prior measure is to

check the dependence of our results on the choice of the prior. For robust fits, which occur

when there is enough precisely constraining data, the posterior probability density should

only have a small dependence upon the precise form of the prior measure.

3.2 The likelihood

Our calculation of the likelihood closely follows ref. [15], with updated data and additional

variables included, and is summarised in table 4 and discussed further below. We assume

that the measurements Di of observables (the ‘data’) used in our likelihood calculation

are independent and have Gaussian errors,3 so that the likelihood distribution for a given

model (H) is

L(Θ) ≡ Pr(D|Θ,H) =
∏

i

Pr(Di|Θ,H), (3.3)

where

Pr(Di|Θ,H) =
1

√

2πσ2
i

exp[−χ2/2] (3.4)

3The experimental constraints the LEP constraint on Higgs mass, BR(Bs → µ+µ−) and ΩDMh2 likeli-

hood, each described later, are not Gaussian.

– 8 –
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and

χ2 =
(ci − pi)

2

σ2
i

. (3.5)

pi is the “predicted” value of the observable i given the knowledge of the model H and σ

is the standard error of the measurement.

In order to calculate predictions pi for observables from the input parameters Θ,

SOFTSUSY2.0.17 [44] is first employed to calculate the MSSM spectrum. Bounds upon

the sparticle spectrum have been updated and are based upon the bounds collected in

ref. [11]. Any spectrum violating a 95% limit from negative sparticle searches is assigned

a zero likelihood density. Also, we set a zero likelihood for any inconsistent point, e.g. one

which does not break electroweak symmetry correctly, has a charged LSP, or has tachyonic

sparticles. For points that are not ruled out, we then link the mSUGRA spectrum via the

SUSY Les Houches Accord [45] (SLHA) to various other computer codes that calculate

various observables. For instance, micrOMEGAs1.3.6 [46], calculates ΩDMh2, the branching

ratio BR(Bs → µ+µ−) and the anomalous magnetic moment of the muon (g − 2)µ.

The anomalous magnetic moment of the muon aµ ≡ (g − 2)µ/2 was measured to be

aexp
µ = (11659208.0 ± 6.3) × 10−10 [47]. Its experimental value is in conflict with the SM

predicted value aSM
µ = (11659178.5 ± 6.1) × 10−10 from [36], which includes the latest

QED [48], electroweak [49], and hadronic [36] contributions to aSM
µ . This SM prediction

does not however account for τ data which is known to lead to significantly different

results for aµ, implying underlying theoretical difficulties which have not been resolved so

far. Restricting to e+e− data, hence using the numbers given above, we find

δ
(g − 2)µ

2
≡ δaµ ≡ aexp

µ − aSM
µ = (29.5 ± 8.8) × 10−10. (3.6)

This excess may be explained by a supersymmetric contribution, the sign of which is

identical in mSUGRA to the sign of the super potential µ parameter [50]. After obtaining

the one-loop MSSM value of (g − 2)µ from micrOMEGAs v1.3.6, we add the dominant

2-loop corrections detailed in refs. [51, 52].

The W boson pole mass MW and the effective leptonic mixing angle sin2 θl
w are also

used in the likelihood. We take the measurements to be [37, 39]

MW = 80.398 ± 0.027 GeV, sin2 θl
w = 0.23149 ± 0.000173, (3.7)

where experimental errors and theoretical uncertainties due to missing higher-order correc-

tions in SM [53] and MSSM [38, 54] have been added in quadrature. The most up to date

MSSM predictions for MW and sin2 θl
w [38] are finally used to compute the corresponding

likelihoods.

A parameterisation of the LEP2 Higgs search likelihood for various Standard Model

Higgs masses is utilised, since the lightest Higgs h of mSUGRA is very SM-like once the

direct search constraints are taken into account. It is smeared with a 2 GeV assumed

theoretical uncertainty in the SOFTSUSY2.0.17 prediction of mh as described in [13].

The experimental value of the rare bottom quark branching ratio to a strange quark

and a photon BR(b → sγ) is constrained to be [55]

BR(b → sγ) = (3.55 ± 0.26) × 10−4. (3.8)

– 9 –
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The SM prediction has recently moved down quite substantially from (3.60± 0.30)× 10−4

to (3.15 ± 0.23) × 10−4 [56, 57]. This shift was caused by including most of the next-to-

next-to-leading order (NNLO) perturbative QCD contributions as well as the leading non-

perturbative and electroweak effects. We use the publicly available code SuperIso2.0 [40]

(linked via the SLHA to the mSUGRA spectrum predicted) which computes BR(b → sγ)

in the MSSM with Minimal Flavor Violation. We note that mSUGRA is of such a minimal

flavor violating form, and so the assumptions present in SuperIso2.0 are the appropriate

ones. The computation takes into account one-loop SUSY contributions, as well as tan β-

enhanced two-loop contributions in the effective lagrangian approach. The recent partial

NNLO SM QCD corrections are also included by the program. Ref. [41] derives a 95%

interval for the bounds including the experimental and theory SM/MSSM errors to be

2.07 × 10−4 < BR(b → sγ) < 4.84 × 10−4. (3.9)

For the constraint on BR(b → sγ), we use the mean value of 3.55 × 10−4 and derive the

1–σ uncertainty from the above given bound to be equal to 0.72 × 10−4. We note that

this is twice as large as the uncertainty used in another recent global fit [14], where an

enhancement in the posterior density of the large tan β region was observed to result from

the new constraint.

The new upper 95% C.L. bound on BR(Bs → µ+µ−) coming from the CDF collabora-

tion is 5.8×10−8. We are in possession [58] of the empirical χ2 penalty for this observable

as a function of the predicted value of BR(Bs → µ+µ−) from old CDF data when the 95%

C.L. upper bound was 0.98×10−8. Here, we assume that the shape of the likelihood penalty

coming from data is the same as presented in ref. [12], but that only the normalisation of

the branching ratio shifts by the ratio of the 95% C.L. upper bounds: 0.58/0.98.

For the ∆o−, isospin asymmetry of B → K∗γ, the 95% confidence level for the exper-

imental results from the combined BABAR and Belle data combined with the theoretical

errors is [41]:

−0.018 × 10−4 < ∆o− < 0.093 × 10−4, (3.10)

with the central value of 0.0375. We derive the 1–σ uncertainty from the above given

bound to be equal to 0.0289. We use the publicly available code SuperIso2.0 [40] to

calculate ∆o−. We neglect experimental correlations between the measurements of ∆o−

and BR(b → sγ). In practice, the ∆o− constraint makes a much smaller difference than

BR(b → sγ) to our fits, and so we expect the inclusion of a correlation to also have a

small effect. The parametric correlations caused by variations of αs(MZ) and mb(mb) are

included by our analysis, since they are varied as input parameters.

The average experimental value of BR(Bu → τν) from HFAG [42] (under purely

leptonic modes) is:

BRexp(Bu → τν) = (141 ± 43) × 10−6. (3.11)

The SM prediction is rather uncertain because of two incompatible empirically derived

values of |Vub|: one being (3.68±0.14)×10−3 . The other comes from inclusive semi-leptonic

decays and is (4.49±0.33)×10−3 . These lead to BR(Bu → τν) values of (0.85±0.13)×10−4
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Figure 1: Depiction of our likelihood constraint on the predicted value of ΩDMh2 due to lightest

neutralinos, compared to a simple Gaussian with WMAP5 central value and a 1σ uncertainty of

0.02.

and (1.39 ± 0.44) × 10−4 respectively. We statistically average these two by averaging the

central values, and then adding the errors in quadrature and dividing by
√

2. This gives:

BRSM(Bu → τν) = (112 ± 25) × 10−6. (3.12)

Taking the ratio of the experimental and SM values of BR(Bu → τν) gives:

RBR(Bu→τν) = 1.259 ± 0.378. (3.13)

For the MSSM prediction, we use the formulae in ref. [59], which include the large tan β

limit of one-loop corrections coming from loops involving a charged Higgs.

The experimental and SM-predicted values of the neutral Bs meson mixing amplitude

are [42, 43]:

∆expms = 17.77 ± 0.12 ps−1,∆SMms = 20.9 ± 2.6 ps−1. (3.14)

Taking the ratio of these two values, we get:

R∆ms
= 0.85 ± 0.12. (3.15)

We use the formulae of ref. [60] for the MSSM prediction of R∆mS
, calculating it in the large

tan β approximation. The dominant correction comes from one-loop diagrams involving a

neutral Higgs boson.

The WMAP 5-year data combined with the distance measurements from the Type

Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of

galaxies gives the Λ-cold dark matter fitted value of the dark matter relic density [61]:

Ω ≡ ΩDMh2 = 0.1143 ± 0.0034. (3.16)

In the present paper, we assume that the dark matter consists of neutralino, the LSP.

Recently, it has been shown that the LSP relic density is highly sensitive to the pre-Big

Bang Nucleosynthesis (BBN) rate and even a modest modification can greatly enhance

the calculated relic density with no contradiction with the cosmological observations [62].
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It is also possible that a non-neutralino component of dark matter is concurrently present

and indeed the inclusion of neutrino masses via right-handed neutrinos can change the relic

density prediction somewhat [63]. We therefore penalise only for the predicted ΩDMh2 being

greater than the WMAP5 + BAO + SN central value. We define x to be the predicted

value of ΩDMh2, c = 0.1143 to be the central ΩDMh2 value from WMAP5 + BAO + SN

observations and s to be the error on the predicted ΩDMh2 value which includes theoretical

as well as experimental components. We take s = 0.02 in order to incorporate an estimate

of higher order uncertainties in its prediction [64] and we define the likelihood as:

L(x ≡ ΩDMh2) =











1

c+
√

πs2/2
, if x < c

1

c+
√

πs2/2
exp

[

− (x−c)2

2s2

]

, if x ≥ c.
(3.17)

A diagram of the resulting likelihood penalty is displayed in figure 1. This differs slightly

from the formulation suggested previously by one of the authors, for L(x ≡ ΩDMh2) for

the case when a non-neutralino component of dark matter is concurrently present, which

drops more quickly than our flat likelihood up until the peak of WMAP Gaussian likelihood

distribution.

4. Results

In this section, we first show our main results on the quantification of the preference of the

fits for µ > 0. Next, we show some highlights of updated parameter constraints coming

from the fit, finishing with a study on the level of compatibility of various observables.

4.1 Model comparison

We summarise our main results in table 5 in which we list the posterior model probability

odds, P+/P− for mSUGRA models with µ > 0 and µ < 0, for the two prior ranges used

with flat and logarithmic prior measures as discussed in section 3. The calculation of the

ratio of posterior model probabilities requires the prior probability ratio for the two signs

of µ (see section 2), which we have set to unity. One could easily calculate the ratio P+/P−

for a different prior probability ratio r, by multiplying P+/P− in table 5 with r. From

the probability odds listed in table 5, although there is a positive evidence in favour of

mSUGRA model with µ > 0, the extent of the preference depends quite strongly on the

priors used and the evidence ranges from being relatively strong in the case of logarithmic

prior with “2 TeV” range to weak for flat priors with “4 TeV” range. This dependence on

the prior is a clear sign that the data are not yet of sufficiently high quality to be able to

distinguish between these models unambiguously. Hopefully, the forthcoming high-quality

data from LHC would be able to cast more light on it.

We also show in table 5 for comparison, the probability ratio P+/P− determined in

an earlier MCMC fit using different data [12]. We can see that our determination of the

probability ratio favours µ > 0 more strongly than ref. [12]. The main factors affecting

this are that ref. [12] had an anomalous magnetic moment of the muon less in conflict with

experiment: δaµ = (22±10)×10−10 as opposed to eq. 3.6 in the present analysis, which also
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Prior “2 TeV” “4 TeV”

flat log flat log

log ∆E (our determination) 2.7 ± 0.1 4.1 ± 0.1 1.8 ± 0.1 3.2 ± 0.1

P+/P− (our determination) 15.6 ± 1.1 61.6 ± 4.3 5.9 ± 0.4 24.0 ± 1.7

log ∆E (from ref. [12]) 2.1 − 1.8 2.7

P+/P− (from ref. [12]) 8.3 − 6.2 14.3

Table 5: The posterior probability ratios for mSUGRA model with different signs of µ. Here we

have assumed the prior probabilities of the different signs of µ to be same. The uncertainties on

log ∆E for mSUGRA model with different signs of µ are the same for different priors, since with

the MultiNest technique, the uncertainty on the evidence value is set by the number of live points

and the stopping criteria (see refs. [18, 19]) which were the same for different priors used in this

study. The second row shows, for comparison, a previous determination with earlier data using the

much less precise bridge sampling method. Some aspects of this fit were somewhat different to the

present work’s approach and are discussed in the text.

includes the additional b-observables: ∆ms, BR(Bu → τν) and ∆0−. Some other details

of the fit were also different in ref. [12]: for instance M1/2 < 2 TeV for all fits, and the

range of A0 was different. These ranges will affect the evidence obtained, at least to some

degree. Unfortunately, ref. [12] neglects to present statistical errors in the determination

of the ratios of evidence values, a situation which is rectified in table 5. It is clear from

table 5 that the uncertainty in the result of the model comparison is presently dominated

by the prior choice, rather than by the small statistical uncertainty in the determination of

the evidence ratio with MultiNest. It can however be concluded that present data favour

the µ > 0 branch of mSUGRA with a Bayesian evidence going from weak to moderate,

depending on the choice of prior.

To quantify the extent to which these results depend on (g−2)µ constraint, we calculate

the Bayesian evidence ratio, for mSUGRA models with µ > 0 and µ < 0, for the flat

“4 TeV” range priors with all the observables discussed in section 3.2 apart from (g − 2)µ.

We find log ∆E = −0.5±0.1 translating into posterior probability odds P+/P− = 0.6±1.1.

This shows that in the absence of (g − 2)µ constraint, both mSUGRA models with µ > 0

and µ < 0 are equally favoured by the data. Inclusion of (g − 2)µ constraint causes a shift

of 2.3 log units in favour of µ > 0 for the linear “4 TeV” range prior measure and hence it

can be concluded that (g − 2)µ does indeed dominate our model selection results in favour

of µ > 0.

4.2 Updated parameter constraints

We display the results of the MultiNest fits on the m0 − M1/2 and m0 − tan β plane

posterior probability densities in figure 2. Previous global fits in mSUGRA have found

that the dark matter relic density has the largest effect on parameter space [9]. In par-

ticular, regions where the LSP annihilates efficiently through some particular mechanism

are preferred by the fits. In the left-hand panel, we see that the highest posterior region is

where the stau co-annihilation channel is active at the lowest value of m0, where the light-

est stau co-annihilates very efficiently with the lightest neutralino due to their near mass
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Figure 2: The 2-dimensional posterior probability densities in the plane spanned by mSUGRA

parameters: m0, m1/2, A0 and tanβ for the linear prior measure “4TeV” range analysis and µ > 0.

The inner and outer contours enclose 68% and 95% of the total probability respectively. All of the

other parameters in each plane have been marginalised over.

degeneracy. Next, in the approximate region 0.5 TeV < m0 < 1.5 TeV, there is another

reasonably high posterior region. In this region, tan β is large and the LSP is approxi-

mately half the mass of the pseudo-scalar Higgs boson A0. The process χ0
1χ

0
1 → A0 → bb̄

becomes an efficient channel in this region. For higher values of m0 > 2 TeV, the hyperbolic

branch [65, 66] régime reigns, where the LSP contains a significant higgsino component and

annihilation into weak gauge boson pairs becomes quite efficient. This region dominantly

has tan β > 10, as can be seen in the right-hand panel of figure 2. All of the qualitative

features of previous MCMC global fits [9, 11 – 13, 15] have been reproduced in the figure,

providing a useful validation of the MultiNest technique in a particle physics context,

where the shape of the multi-dimensional posterior exhibits multi-modality and curving

degeneracies. 2-dimensional marginalisations in other mSUGRA parameter combinations

also agree to a large extent with previous MCMC fits, for both µ > 0 and µ < 0. However,

compared to MCMC fits in refs. [9, 11, 14], there has been a slight migration for µ > 0:

the stau co-annihilation region has become relatively more favoured than previously and

the hyperbolic branch has become less favoured. This is primarily due to MW and sin2 θl
w:

our calculation includes 2-loop MSSM effects and so we are able to place smaller errors

on the theoretical prediction than refs. [9, 11, 14]. Both of these variables show a mild

preference for a sizable SUSY contribution once these 2-loop effects are included [67]. The

pure SOFTSUSY2.0.17 calculation is at 1-loop order and without the additional two loop

effects, it displays a preference for larger SUSY scalar masses [12], thus favouring the hy-

perbolic branch region more. An effect in the opposite direction that comes from including

the NNLO corrections to BR(b → sγ) is possible [14]. Large values of m0 in the hyperbolic

branch region lead to fairly light charged Higgs’ in mSUGRA due to charged Higgs-top

– 14 –



J
H
E
P
1
0
(
2
0
0
8
)
0
6
4

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

3.5

4

m1/2 (TeV)

m
0

(T
eV

)

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

3.5

4

m1/2 (TeV)

m
0

(T
eV

)
Figure 3: The 2-dimensional mSUGRA posterior probability densities in the plane m0, m1/2

for µ < 0 for (left) the ‘4 TeV range’ linear measure prior analysis and (right) the ‘4 TeV range’

logarithmic measure prior analysis. The inner and outer contours enclose 68% and 95% of the total

probability respectively. All of the other parameters in each plane have been marginalised over.

loops, which may then push the branching ratio toward its experimentally preferred range,

by adding constructively to the Standard Model contribution. However, our estimate of

the combined statistical error of BR(b → sγ) in table 4 means that this effect only has a

small statistical pull on the fits, being out-weighed by the effects mentioned above in the

opposite direction. We note here that, as mt as determined from experiment increases, the

focus point region moves to higher values of m0 [68]. However, very similar fits to the ones

presented here were performed for mt = 172.6 ± 1.8 GeV, see figure 2a of ref. [16], and the

posterior density on the m0 − M1/2 plane did not change much compared to the present

paper (which uses mt = 170.9 ± 1.8 GeV).

For µ < 0, the fit prefers a higher posterior probability for the focus point region

compared to ref. [12]. We show the marginalisation of µ < 0 mSUGRA to the m0 − m1/2

plane in figure 3. The left-hand panel shows the linear measure prior analysis and may

be compared directly with figure 5a of ref. [12], which has the stau co-annihilation region

having the highest posterior density. The increased discrepancy of (g − 2)µ in the present

fit with current data will favour heavier sparticles due to the SUSY contribution being of

the wrong sign for µ < 0 mSUGRA. In the right-hand side, we see how the fit changes due

to a logarithmic measure on the prior. Indeed, the foreseen shift toward lower values of m0

is significant, the stau co-annihilation channel being favoured once more. Although there

are some similarities with the left-hand panel, it is clear that the choice of prior measure

still has a non-negligible effect on the fit despite the inclusion of new b-physics observables.

With this fact still in mind, we compare the posterior probability density function for

µ > 0 and µ < 0 in figure 4 for linear measure priors. In figure 4, we see the preference for

heavier sparticles in the µ < 0 case reflected in the larger values for the universal scalar and
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Figure 4: Comparison of µ < 0 and µ > 0 1-dimensional relative posterior probability densities

of mSUGRA parameters for the linear measure prior ‘4 TeV’ range analysis. All of the other input

parameters have been marginalised over.

µ > 0 µ < 0

Parameter 68% region 95% region 68% region 95% region

mh0 (GeV) (117, 119) (114, 121) (119, 120) (117, 121)

mA0 (TeV) (0.62, 2.12) (0.48, 3.33) (1.08, 3.23) (0.75, 3.75)

mq̃L
(TeV) (1.57, 3.79) (0.93, 4.47) (2.71, 4.18) (2.07, 4.64)

mg̃ (TeV) (1.53, 2.17) (0.95, 3.15) (1.75, 2.45) (1.11, 3.29)

mχ̃0
1

(TeV) (0.19, 0.48) (0.11, 0.68) (0.20, 0.52) (0.13, 0.70)

mχ̃±

1

(TeV) (0.25, 0.86) (0.14, 1.22) (0.22, 0.88) (0.15, 1.26)

mẽR
(TeV) (0.69, 3.34) (0.21, 3.91) (2.09, 3.75) (0.93, 3.97)

Table 6: sparticle mass ranges for linear ‘4 TeV’ analysis corresponding to 68% and 95% of posterior

probability.

gaugino masses m0 and m1/2. It is clear from the top left hand panel that any inference

made about scalar masses µ < 0 will be quite sensitive to the exact range taken, since the

m0 distribution is near its maximum at large values close to 4TeV. On the other hand, the

data constrains m1/2 < 2TeV robustly. µ < 0 favours large tan β less than µ > 0 since for

large tan β, (g − 2)µ becomes more negative, with the wrong sign compared to the data.

As discussed in section 2, one can easily obtain the posterior for the observables,

which are derived from the model parameters, from the posterior of the model parameters.

Figure 5 displays the statistical pulls of the various observables. In the absence of any
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Figure 5: An illustration of tensions between different observables for the mSUGRA model. The

black (dash-dotted), red (thin solid) and the blue (thick solid) lines show the relative posterior

probability for µ > 0, µ < 0 and the likelihood respectively for each observable.

tension between the constraints or volume effects, one would expect the posterior curves to

lie on top of the likelihood curves representing the experimental data used in the analysis

(see also [10]). In order to separate the volume effects from pulls originating from data, the

likelihood profile could be used [15]. Here though, we just comment on the combined effect

from the two mechanisms. We see that ΩDMh2 has a preference for being rather small,

but non-zero for either sign of µ. Since any value below ΩDMh2 = 0.1143 is not penalised

by the likelihood penalty we have used, this may be ascribed to a combination of volume

effects (where there is simply more volume of parameter space with a small relic density)

and pull toward those region from the other observables. The biggest disparity between

the experimental data and the posterior probability distribution is observed for the δaµ

constraint, which can only be near its central measured value for light sparticles and large

tan β. Many of the other constraints are pulling toward large values of the masses, where

the volume of parameter space is larger, and so small values of |δaµ| are preferred. We

see a slight preference for µ < 0 from the BR(b → sγ) constraint, as expected from the

discussion in section 4.2 and ref. [14], but this is too small to outweigh the effects of δaµ,

as shown previously by our estimate of P+/P−. The figure shows that the ratio R∆ms
, of

the MSSM prediction of the Bs mass splitting to the SM prediction is really not active, i.e.

that it does not vary across allowed mSUGRA parameter space, and so does not have an

effect on the posterior density.
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We list the sparticle mass ranges for linear ‘4 TeV’ analysis corresponding to 68% and

95% of the posterior probability in table 6.

4.3 Consistency check between different constraints

It is clear from figure 5 that δaµ and BR(b → sγ), both important observables, are pulling

in opposite directions. We choose the ‘strongly preferred’ value of µ > 0 for our analysis.

In order to check whether the observables (g − 2)µ and BR(b → sγ) provide consistent

information on the µ > 0 branch of mSUGRA parameter space, calculation of the parameter

R as given in eq. 2.6 is required. In order to carry out this calculation, we impose linear

‘4 TeV’ priors. In figure 6, we plot the posterior probability distributions for the m0 −
m1/2 and m0 − tan β planes for the analysis with ΩDMh2, (g − 2)µ and BR(b → sγ)

individually. From the figure, we see that the 68% probability regions preferred by the

δaµ and BR(b → sγ) data are a little different as expected for µ > 0, since δaµ prefers

light SUSY particles whereas the BR(b → sγ) datum prefers heavy ones in the hyperbolic

branch region. Nevertheless, some overlap in the 95% probability regions favoured by these

two data-sets. One would then expect the inconsistency between BR(b → sγ) and (g−2)µ
not to be highly significant. We evaluate

log R = −0.32 ± 0.04, (4.1)

showing very small evidence for inconsistency between (g − 2)µ and BR(b → sγ).

Since ΩDMh2 plays such a dominant role in shaping the posterior, we next check

consistency between all three constraints in mSUGRA. We perform the analysis in the

same manner as described above and evaluate R to be:

log R = 0.61 ± 0.06, (4.2)

showing no evidence for inconsistency between (g − 2)µ, BR(b → sγ) and ΩDMh2.

These results can be seen qualitatively in the 2-D posterior for the joint analysis of

(g − 2)µ, BR(b → sγ) and ΩDMh2 in figure 6. It can be seen that the joint posterior lies

precisely in the region of overlap between posteriors for the analysis of these three data-sets

separately. As shown in appendix A, in the presence of any inconsistency between different

data-sets, the joint posterior can be seen to exclude the high posterior probability regions

for the analysis with the data-sets separately which is not the case here and consequently

we do not find a strong evidence for inconsistency between (g − 2)µ, BR(b → sγ) and

ΩDMh2 data-sets.

We now treat all the observables D̃, apart from (g − 2)µ, BR(b → sγ) and ΩDMh2 as

additional priors on the mSUGRA parameter space in order to see whether these have any

effect on the consistency between (g − 2)µ and BR(b → sγ). Equation 2.6 then becomes:

R =
Pr((g − 2)µ, BR(b → sγ)|D̃,H1)

Pr((g − 2)µ|D̃,H0) Pr(BR(b → sγ)|D̃,H0)
, (4.3)

where the H1 hypothesis states that mSUGRA jointly fits the two observables, whereas H0

states that the two observables prefer different regions of parameter space.
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Figure 6: The 2-dimensional posterior probability distributions of µ > 0 branch of mSUGRA

with: from top to bottom, ΩDMh2, BR(b → sγ), δaµ, and joint analysis of all three. The inner and

outer contours enclose 68% and 95% of the total probability respectively. All of the other input

parameters in each plane have been marginalised over.
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Since the measurements Di of the observables used in the likelihood are independent,

Pr((g − 2)µ, BR(b → sγ)|D̃,H1) =
Pr((g − 2)µ, BR(b → sγ), D̃|H1)

Pr(D̃|H1)
, (4.4)

Pr((g − 2)µ|D̃,H0) =
Pr((g − 2)µ, D̃|H0)

Pr(D̃|H0)
, (4.5)

Pr(BR(b → sγ)|D̃,H0) =
Pr(BR(b → sγ), D̃|H0)

Pr(D̃|H0)
, (4.6)

where Pr(D̃|H0) = Pr(D̃|H1) is the Bayesian evidence for the analysis of µ > 0 branch of

mSUGRA model with D̃, all the observables apart from (g−2)µ, BR(b → sγ) and ΩDMh2.

Hence, to evaluate R, we calculate the Bayesian evidence for the joint as well as individual

analysis with D̃, (g − 2)µ and BR(b → sγ). We evaluate

log R = 0.28 ± 0.15, (4.7)

showing that even the slight inconsistency found between (g − 2)µ, BR(b → sγ) without

treating D̃ as additional priors on mSUGRA model, has now vanished which means that

D̃ data-sets have cut-off the discrepant regions of the two constraints.

5. Summary and conclusions

Bayesian analysis methods have been used successfully in astronomical applications [69 –

77, 30]. However, the application of Bayesian methods to problems in particle physics is less

established, due perhaps to the highly degenerate and multi-modal parameter spaces which

present a great difficulty for the standard MCMC based techniques. Bank sampling [27]

provides a practical means of MCMC parameter estimation and evidence ratio estimation

under such circumstances, but it cannot calculate the evidence itself. We have shown that

the MultiNest technique not only handles these complex distributions in a highly efficient

manner but also allows the calculation of the Bayesian evidence enabling one to perform the

model comparison. This could be of great importance in distinguishing different beyond

the Standard Model theories, once high quality data from the LHC becomes available.

Our central results are summarised in table 5. It is clear that, in global mSUGRA

fits to indirect data, µ > 0 is somewhat preferred to µ < 0, mainly due to data from

the anomalous magnetic moment of the muon, which outweighs the preference for µ < 0

from the measured branching ratio of a b quark into an s quark and a photon and the SM

prediction when some of the NNLO QCD contributions are included. For a given measure

and range of the prior, the evidence ratio between the different signs of µ is accurately

determined by the MultiNest technique. Despite additional data from the b−sector

and the anomalous magnetic moment of the muon having a higher discrepancy with the

Standard Model prediction, there is still not enough power in the data to make the fits

robust enough. We see a signal of this in the fact that the evidence ratio P+/P− is highly

dependent upon the measure and range of the prior distribution of mSUGRA parameters.

We obtain P+/P− = 6− 61 depending upon which range and which measure is chosen. All
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of these values exhibit positive evidence, but on the scale summarised in table 1, ‘weak’

evidence is characterised as being bigger than 3, ‘moderate’ as bigger than 12. Thus we

cannot unambiguously conclude that the evidence is strongly in favour of µ > 0: only weak.

A further test also suggested that within one prior measure and range, and for µ > 0, the

tension between the observables (g − 2)µ and BR(b → sγ) is not statistically significant.

A. Consistency check with bayesian evidence

In order to motivate the use of Bayesian evidence to quantify the consistency between

different data-sets as discussed in section 2, we apply the method to the classic problem of

fitting a straight line through a set of data points.

A.1 Toy problem

We consider that the true underlying model for some process is a straight line described

by:

y(x) = mx + c, (A.1)

where m is the slope and c is the intercept. We take two independent sets of measurements

D1 and D2 each containing 5 data points. The x value for all these measurements are

drawn from a uniform distribution U(0, 1) and are assumed to be known exactly.

A.1.1 Case I: consistent data-sets

In the first case we consider m = 1, c = 1 and add Gaussian noise with standard deviation

σ1 = 0.1 and σ2 = 0.1 for data-sets D1 and D2 respectively. Hence both the data-sets

provide consistent information on the underlying process.

We assume that the errors σ1 and σ2 on the data-sets D1 and D2 are known exactly.

The likelihood function can then be written as:

L(m, c) ≡ Pr(D|m, c,H) =
∏

i

Pr(Di|m, c,H), (A.2)

where

Pr(Di|m, c,H) =
1

√

2πσ2
i

exp[−χ2
i /2] (A.3)

and

χ2
i =

∑

j

(y(xj) − ỹ(xj))
2

σ2
i

. (A.4)

where ỹ(xj) is the predicted value of y at a given xj.

We impose uniform, U(0, 2) priors on both m and c. In figure 7 we show the data

points and the posterior for the analysis assuming the data-sets D1 and D2 are consistent.

The true parameter value clearly lies inside the contour enclosing 68% of the posterior

probability.
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Figure 7: Upper left: Data-sets D1 and D2 drawn from a straight line model (solid line) with

slope m = 1 and intercept c = 1 and subject to independent Gaussian noise with root mean

square σ1 = σ2 = 0.1. Upper right: Posterior Pr(m, c|D, H1) assuming that data-sets D1 and

D2 are consistent. Lower left: Posterior Pr(m, c|D, H1) for data-set D1. Lower right: Posterior

Pr(m, c|D, H1) for data-set D2. The inner and outer contours enclose 68% and 95% of the total

probability respectively. The true parameter value is indicated by red crosses.

In order to quantify the consistency between the data-sets D1 and D2, we evaluate R

as given in eq. 2.6 which for this case becomes:

R =
Pr(D1,D2|H1)

Pr(D1|H0) Pr(D2|H0)
, (A.5)

where the H1 hypothesis states that the model jointly fits the data-sets D1 and D2, whereas

H0 states that D1 and D2 prefer different regions of parameter space. We evaluate,

log R = 3.2 ± 0.1, (A.6)

showing strong evidence in favour of H1.
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Figure 8: Upper left: Data-sets D1 and D2 drawn from a straight line model (solid line) with

slope m = 0, c = 1.5 and m = 1, c = 1 respectively and subject to independent Gaussian noise with

root mean square σ1 = σ2 = 0.1. Upper right: Posterior Pr(m, c|D, H1) assuming that data-sets

D1 and D2 are consistent. Lower left: Posterior Pr(m, c|D, H1) for data-set D1. Lower right:

Posterior Pr(m, c|D, H1) for data-set D2. The inner and outer contours enclose 68% and 95% of

the total probability respectively. The true parameter values are indicated by red and black crosses

for Data-sets D1 and D2 respectively.

A.1.2 Case II: inconsistent data-sets

We now introduce systematic error into the data-set D1 by drawing from an incorrect

straight line model with m = 0 and c = 1.5. Measurements for D2 are still drawn from a

straight line with m = 1 and c = 1. We assume that the errors σ1 = 0.1 and σ2 = 0.1, for

D1 and D2 respectively, are both quoted correctly.

We impose uniform priors, U(−1, 2) and U(0, 2), on m and c respectively. In figure 8

we show the data points and the posterior for the analysis assuming the data-sets D1 and

D2 are consistent as well as for the analysis with data-sets D1 and D2 taken separately.

In spite of the fact that the two sets of true parameter values define a direction along the

natural degeneracy line in the (m, c) plane, neither of the true parameter values lie inside

the contour enclosing 95% of the posterior probability. Also, it can be seen that the there
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is no overlap between the posteriors for data-sets D1 and D2 and so both models can be

excluded at a high significance level. We again compute R as given in eq. A.5 and evaluate

it to be,

log R = −13.1 ± 0.1, (A.7)

showing evidence in favour of H0 i.e. the data-sets D1 and D2 provide inconsistent infor-

mation on the underlying model.
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[51] S. Heinemeyer, D. Stöckinger and G. Weiglein, Electroweak and supersymmetric two-loop

corrections to (g − 2)µ, Nucl. Phys. B 699 (2004) 103 [hep-ph/0405255]; Two-loop SUSY

corrections to the anomalous magnetic moment of the muon, Nucl. Phys. B 690 (2004) 62

[hep-ph/0312264].
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